Comparing fractions with the same denominator

When comparing parts of the unit that are the same size, the fraction with the largest numerator is the greater fraction.

I know this because $3<5$.

Ex) Katherine ate $\frac{2}{6}$ of a pizza. Patrick ate $\frac{4}{6}$ of a pizza. Who ate more?

Patrick ate more pizza. I know this because $2<4$.

Comparing fractions with the same numerator

When comparing fractions with different sized parts, the fraction with the smallest denominator is the greater fraction.
Ex) $\frac{2}{8}>\frac{2}{10}$ I know this because $\frac{1}{8}>\frac{1}{10}$

Ex) Julianne ate 3 slices of a pizza cut into 6 pieces. Sarah ate 3 slices of a pizza cut into 8 pieces. Who ate more?

Julianne ate more pizza. I know this because $\frac{1}{6}>\frac{1}{8}$

Transitive Strategy: Using $\frac{1}{2}$ as a benchmark

When comparing fractions and the denominators are even, compare the fractions to the unit fraction $\frac{1}{2}$.
Ex) $\frac{3}{8}<\frac{4}{6}$

$$
\text { I know this because } \frac{1}{2}=\frac{4}{8} \text { and } \frac{1}{2}=\frac{3}{6} \text {. }
$$

So if $\frac{3}{8} \odot \frac{4}{8}$ and $\frac{4}{6} \odot \frac{3}{6}$ then $\frac{3}{8} \odot \frac{4}{6}$
Ex) Katie ate $\frac{4}{10}$ of a pizza and Mal ate $\frac{3}{4}$ of a pizza. Who ate more?

I know this because $\frac{1}{2}=\frac{5}{10}$ and $\frac{1}{2}=\frac{2}{4}$. So if $\frac{5}{10}>\frac{4}{10}$ and
$\frac{2}{4}<\frac{3}{4}$ then $\frac{4}{10}<\frac{3}{4}$. Therefore, Mal ate more pizza.

Residual Strategy: Fill the whole

I know this because the missing $\frac{1}{6}$ part is smaller than the missing $\frac{1}{8}$ part. So if $\frac{7}{8}$ is closer to 1 whole, then $\frac{5}{6} \odot \frac{7}{8}$.

Ex) Kelly ate $\frac{3}{4}$ of a pizza and Greg ate $\frac{2}{3}$ of a pizza. Who ate more?

I know this because the missing $\frac{1}{4}$ part is smaller than the missing $\frac{1}{3}$ part. So if $\frac{3}{4}$ is closer to 1 whole, then $\frac{3}{4} 丹 \frac{2}{3}$.
Therefore, Kelly ate more pizza than Greg.

Comparing fractions with related denominators

Change one denominator, and then compare the new fractions.

Ex) Kyle ate $\frac{4}{6}$ of a pizza. Jess ate $\frac{7}{12}$ of a pizza. Who ate more?

Therefore, Kyle ate more pizza than Jess.

Comparing non related fractions

Find the Least Common Multiple and change both denominators, then compare the new fractions.

Ex) $\frac{4}{7}<\frac{2}{3}$
I know $\frac{4}{7}=\frac{12}{21}$ and $\frac{2}{3}=\frac{14}{21}$.
7142128
$\begin{array}{llllllll}3 & 6 & 9 & 12 & 15 & 18 & 21 & 24\end{array}$
So if $\frac{12}{21} \odot \frac{14}{21}$, then $\frac{4}{7} \odot \frac{2}{3}$.
Ex) Mary ate $\frac{5}{9}$ of a pizza. Alex ate $\frac{3}{4}$ of a pizza. Who ate more?

Least Common Multiple:
$\begin{array}{lllllll}9 & 18 & 27 & 36 & 45 & 54 & 63\end{array}$
$\begin{array}{llllllll}4 & 8 & 12 & 16 & 20 & 24 & 28 & 32\end{array} 36$

I know $\frac{5}{9}=\frac{20}{36}$ and $\frac{3}{4}=\frac{27}{36}$. So if $\frac{20}{36} \odot \frac{27}{36}$
then $\frac{5}{9}<\frac{3}{4}$. Therefore, Alex ate more than Mary.

